Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica

نویسندگان

  • Ala Khazendar
  • Eric Rignot
  • Dustin M Schroeder
  • Helene Seroussi
  • Michael P Schodlok
  • Bernd Scheuchl
  • Jeremie Mouginot
  • Tyler C Sutterley
  • Isabella Velicogna
چکیده

Enhanced submarine ice-shelf melting strongly controls ice loss in the Amundsen Sea embayment (ASE) of West Antarctica, but its magnitude is not well known in the critical grounding zones of the ASE's major glaciers. Here we directly quantify bottom ice losses along tens of kilometres with airborne radar sounding of the Dotson and Crosson ice shelves, which buttress the rapidly changing Smith, Pope and Kohler glaciers. Melting in the grounding zones is found to be much higher than steady-state levels, removing 300-490 m of solid ice between 2002 and 2009 beneath the retreating Smith Glacier. The vigorous, unbalanced melting supports the hypothesis that a significant increase in ocean heat influx into ASE sub-ice-shelf cavities took place in the mid-2000s. The synchronous but diverse evolutions of these glaciers illustrate how combinations of oceanography and topography modulate rapid submarine melting to hasten mass loss and glacier retreat from West Antarctica.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antarctic Ice Shelf Tide Modeling Using PALSAR Interferometry

The knowledge of ocean tides underneath permanently or seasonally sea ice covered ocean and ice shelves over Antarctica, is largely unknown. Significant amount of West Antarctic ice sheet melt is through the mechanism of basal melting and due to turbulent tidal mixing. Knowledge of the ice shelf grounding lines and their extent, are critical to accurately quantify ice sheet mass balance, and oc...

متن کامل

Ice plug prevents irreversible discharge from East Antarctica

Changes in ice discharge fromAntarctica constitute the largest uncertainty in future sea-level projections, mainly because of the unknown response of its marine basins1. Most of West Antarctica’s marine ice sheet lies on an inland-sloping bed2 and is thereby prone to a marine ice sheet instability3–5. A similar topographic configuration is found in large parts of East Antarctica, which holds ma...

متن کامل

Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica

Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These mea...

متن کامل

Adaptive mesh, finite volume modeling of marine ice sheets

Continental scale marine ice sheets such as the present day West Antarctic Ice Sheet are strongly affected by highly localized features, presenting a challenge to numerical models. Perhaps the best known phenomenon of this kind is the migration of the grounding line — the division between ice in contact with bedrock and floating ice shelves — which needs to be treated at sub-kilometer resolutio...

متن کامل

Rapid bottom melting widespread near Antarctic Ice Sheet grounding lines.

As continental ice from Antarctica reaches the grounding line and begins to float, its underside melts into the ocean. Results obtained with satellite radar interferometry reveal that bottom melt rates experienced by large outlet glaciers near their grounding lines are far higher than generally assumed. The melting rate is positively correlated with thermal forcing, increasing by 1 meter per ye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016